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SUBGROUPS OF FREE PROFINITE GROUPS 
AND LARGE SUBFIELDS OF 0 

BY 

A. LUBOTZKY ~ AND L. VAN DEN DRIES 

ABSTRACT 

We prove that many subgroups of free profinite groups are free, and use this to 
give new examples of pseudo-algebraically closed subfields of 0 satisfying 
Hilbert's Irreducibility Theorem, and to solve problems posed by M. Jarden and 
A. Macintyre. We also find a subfield of I) which does not satisfy Hilbert's 
Irreducibility Theorem, but all of whose proper finite extensions do. 

Introduction 

A classical theorem of Nielsen and Schreier states that subgroups of free 

groups are free. This can for instance be proved by the method of coset 

representatives of combinatorial group theory. Using Galois cohomology, Tate 

proved the pro-p analogue of the Nielsen-Schreier theorem: closed subgroups 

of free pro-p groups are free pro-p groups, see [5], [8], [19]. Neither combinator- 

ial methods nor Galois cohomology seem to give similar results for closed 

subgroups of free profinite groups. (Such groups occur frequently as Galois 

groups, see section 4.) In fact, some restrictions on the closed subgroups are 

needed to obtain an analogue, even for normal closed subgroups: the kernel of 

the natural map of a free profinite group F onto its maximal pro-solvable 

quotient is not a free profinite group if F is of rank > 1, see also the introduction 

of §3. (The rank 1 or procyclic case is not interesting for the questions we 

consider.) 

Our main result (3.1) gives a very general sufficient condition for a closed 

normal subgroup N of Fe, the free profinite group on e generators, e E N, to be 

free as a profinite group. This condition (which is not necessary as (3.15) shows) 

states that F,/N is not e-~reely indexed. For instance, if rk(Fe/N)<e, the 

condition is obviously satisfied, " rk"  denoting the minimal number of (topologi- 

cal) generators. 
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This notion of "e-freely indexed profinite group", which is fundamental for 

our purpose, seems to be new, and is defined and studied in section 2. Roughly, 

this notion, combined with a theorem of Iwasawa, (1.7), allows us to reduce the 
problem of freeness of closed normal subgroups of i6, to that of the solvability of 

certain lifting problems for open subgroups of /~,. But properties of open 

subgroups of F,  are readily derived from properties of subgroups of finite index 

in P,, the (discrete) free group on e generators, as we show in section 1. 

One surprising consequence of our main result is that, although a closed 

normal subgroup N of if'e, e _-> 2, need not be free, all proper open subgroups of 

N are free (on No generators if the index [/~e :N]  is infinite), see (3.10). Other 

corollaries are analogous to well known results for discrete free groups: the 

closed commutator  subgroup of /~e, e ->_ 2, is free, (3.9), and a closed normal 

subgroup of Fe, e _--- 2, is (topologically) finitely generated if and only if its index 

in Fe is finite. 
We also prove similar theorems for subgroups of i6,, the free profinite group 

on Xo generators. Moreover,  all results described above are in fact proved in the 

more general context of pro-C~ groups, where c¢ is any class of finite groups 

closed under subgroups, homomorphic images and extensions. 

In the last section, §4, we apply our results to fields, mainly to so-called 

pseudo-algebraically closed fields (PAC-fields), introduced by J. Ax in [2]. 

Interesting examples of such fields have been discovered by M. Jarden. In 
particular he found many algebraic PAC-extensions K of Q such that G(K)= 
/~,, e E N, and even some with G(K) = Fo,, where G(K) = Gal(t) /K).  In fact, 

our research was motivated by a question posed by A. Macintyre: which 
profni te  groups can occur as absolute Galois groups of PAC-fields? In (4.8) we 
observe that these profinite groups are exactly the closed subgroups of free 

profinite groups. 
Applying results of section 3 to the algebraic PAC-extensions of Q discovered 

by Jarden, we obtain: 

(1) examples of hilbertian fields of a new type; they are surprisingly close to 

their algebraic closure I), see (4.5); 

(2) an example of a non-hilbertian, non-algebraically closed field all of whose 

proper fni te  extensions are hilbertian, see (4.6); 

(3) a solution to a problem posed by Jarden in [12], see (4.7). 

Finally, our results have also applications related to the congruence subgroup 

problem. For this, see [15]. 

Section 1 is mainly included to make this paper self-contained. For other 

proofs of Propositions (1.4) and (1.10), see [3]. 
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After this paper was written L. Ribes called our attention to D. V. Mel'nikov's 

paper, Normal subgroups of free profinite groups (Math. USSR-Izvestiya, Vol. 12, 
No. 1 (1978)), where most of the consequences in Section 3 of our main theorem 

(3.1) are derived in another way and in somewhat greater generality. As our 

methods are different and more elementary, it seemed still worthwhile not to 

omit those parts of Section 3. 

Some conventions and terminology 

Unless we indicate otherwise, we suppose subgroups of profinite groups to be 

closed and morphisms between profinite groups to be continuous. If (sub) groups 

in the ordinary sense are intended, we call them discrete, if there is any 

possibility of misunderstanding. Further "<~, =<" are used for "normal subgroup 

of, subgroup of"; 1 denotes the group identity as well as the trivial group. Most 

other terminology is standard, see chapter I of [19]; in particular, free profinite 

groups are, what some authors call, free in the restricted sense: their free 

generating set converges to 1. In (3.9) we also use the derived series G ~"~, and the 

lower central series G~n) of a profinite group G:  G °~ = G~1)= closure of [G, G], 

G t"÷" = (Gt"~) "~, Gt,÷~ = closure of [Gt,~, G]. The Frattini subgroup ~ ( G )  of a 

profinite group G is the intersection of its maximal proper open subgroups, see 

(3.12). Finally, N = {0, 1, 2 , . . .  }, and we use e, f, n for elements of N. 

§1. Open subgroups of free pro-qg groups 

We recall first some notions and facts on profinite groups which will be 

constantly used in the following. If we give no reference or proof, the reader may 

consult chapter I of [19] for details. 

(1.1) From now on in this paper ~ will denote a class of finite groups which is 
closed under formation of subgroups, homomorphic images, finite products, and 
which contains at least one non-trivial group. Pro-~ groups are profinite groups 
whose finite quotients are in ~g. So the pro-CO groups are closed under formation 

of subgroups, homomorphic images and (infinite) products. 

The class c~ is called full if c~ is also closed under extension of groups. So the 

classes of finite abelian groups and finite nilpotent groups are not full, while the 

classes of (finite) p-groups, finite solvable groups and all finite groups are full. If 

qg is full, then the pro-~ groups are closed under extension of profinite groups: if 

N is a normal subgroup of the profinite group G, and N and G I N  are pro-~¢ 

groups, then G is a pro-C¢ group. If ~ is full, S ~ c~ and p I # S, where p is 
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prime, then ~ contains a cyclic group of order p, as every p-group has a normal 

series with cyclic factors of order p, ~ contains all p-groups, and hence all 

pro-p-groups are pro-qg groups. 

Let G be any group. Then the family NS(G, ~)  d~. {N I N "~ G, G / N  E ~} 
serves as basis of neighborhoods of the identity for a topology on G making G a 
topological group. This topology will be called the pro-C~ topology of G, and the 

pro-~ group 

d(~) do, 
= lim G / N  

NENS(G,r¢) 

together with the canonical continuous morphism z : G  ~ 0 ( ~ ) ,  is called the 

pro-qg completion of G. 
Let further S(G, ~)  be the set of all subgroups of G which contain an 

N ~ NS(G, ~). With these notations we have: 

(1.2) PROPOSITION. (a )  "l'(G) is dense in G(qg). 
(b) S(G, qg) = set of open subgroups of G. 
(c) Each group morphism ~k : G ~ H is continuous, if G and H are both 

endowed with their pro-~¢ topology, and there is a unique continuous morphism 
6(qg): (~(qg)--->ff/(~) making the diagram 

G ~H 

d(~) , ~(~)  

commutative. 
(d) The functor ^(qg) is right exact. 
Suppose moreover that qg is full and let G be a group. Then one has: 
(e) Let H E S(G, ~). Then the pro-~ topology of G induces on H the pro-C~ 

topology of H; the induced morphism I?t(~)---> G(qg) is a (topological) isomor- 
phism of ffl(~) onto the open subgroup ~ of d(qg), where 1" : G ~ d(c¢) is the 
canonical map. Moreover ~'-I(~-H)=H, [G:H]=[t~(~):7---H], and G / H  is 
canonically isomorphic with ~(qg)/-~-H if H<~G. 

(f) H ~, ~ is a bijection of S ( G, <¢) onto the set of open subgroups of (~ (~), and 
maps NS(G, qg) onto the set of open normal subgroups of d ( ~ ) .  

PROOF. We leave (a) and (b) to the reader. As for (c), we only indicate how 

~(qg) is defined: let g = (gM" M) ~ lim G/M, M ranging over NS(G, cg); then 

~(qg)(g) = (4~(g,-,N)" N), N ranging over NS(H, ~). 
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(d) If ~b:G--*H is surjective, then by (a) and (c), 6 (~ ) (0 (qg ) )  is dense in 

/-?/(cd) and is compact, so coincides with H ( ~ ) .  Similarly, one checks Ker(6  (qg)). 

(e) We suppose first that H<~G, i.e. H E N S ( G , ~ ) ,  and show that 

NS(H, q¢) C S(G, cg). Let N ~ NS(H, ~)  and write G = z lH U ""  U z,H. Then 
M = N T, n . . .  n N "n is a normal subgroup of G and H / M  is embedded in 

H / N  ~, × • • • × H / N  ~. E c¢, so H / M  E q~. Because also G / H  E qg, we get G / M  E 
q¢, so N ~ M E NS ( G, c¢), resulting in N E S ( G, c~ ). 

If H is an arbitrary element of S(G, ~), then H contains an H ' E  NS(G, qg), 
and the inclusion NS(H',  ~ )C  S(G, qg) easily implies that NS(H, ~ )C  S(G, ~), 
from which we get that the p ro-~  topology of H is induced by the pro-~  
topology of G. The remaining assertions in (e) and (f) are now routine. []  

(1.3) For a finitely generated group G, henceforth f.g. group G, the rank of G, 

rk(G), is its minimal number of generators. This notion is extended to profinite 

groups as follows: a subset X of a profinite group G is said to generate G if the 

(discrete) subgroup generated by X is dense in G;  we call G finitely generated, 

f.g. for short, if G has a finite subset which generates G, and in that case we let 

rk(G)  be the minimal number of elements of such a subset. If G is a group 
generated by a finite subset X, then ~'(X) generates the profinite group (~(~),  so 

rk(t~(q~)) =< rk(G). 

In particular, let F ,  be the free group on e generators, e E N. Then its p ro-~  
completion P~(qg) is also the free pro-qg group on a set of e elements, see [19, 

pp. 61-62], and rk/~, (~ )  _-< e. But c¢ contains the group (Z/pZ)" of rank e, for 

some prime p, so/~, (c¢) has a finite group of rank e as homomorphic image, so 

actually 

rk(P~ (~¢)) = e = rk(F,). 

It is convenient to define E(G)  = r k ( G ) -  1 for f.g. (profinite) groups G. It is 

well known that for subgroups H of finite index in F, the following holds: H is 

free and E(H)=[Fe : H ] ( e -  1 )=  [F, :H] .E(F, ) ,  cf. [17, p. 16]. We have the 

following profinite analogue. 

(1.4) PROPOSmON. Let c¢ be a full class, e ~ N. Then each open subgroup H of 

F, ( qg ) is a [ree pro- ~ group on a set of 1 + [i6~ (~¢) : H ] .  (e - 1) elements, so again 

(*) E(H)  = [ L  ( ~ ) : H ] .  E(/~, ((~)). 

PROOF. This follows immediately from (1.2), (e) and (f), and the remark 

above on free discrete groups. 
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(1.5) The condition on U to be full is essential: let N be the class of finite 

nilpotent groups. As every pro-nilpotent group is the product of its p-Sylow 

subgroups, we have: 

P 

where p runs over all primes and P, (p) is the free pro-p-group on e generators. 

Suppose e >= 2, and let U2, U3 be open subgroups of P, (2),/~, (3) of index 2, 3 

respectively. Then rk(U2) = 1 + 2(e - 1) = 2e - 1 and rk(U3) = 1 + 3(e - 1) = 

3 e -  2. The open subgroup U =/-/2 x U3 × 1-Ip,,2.3 P, (p) of P, (N) is of index 6 

and r k ( U ) =  m a x { 2 e -  1 , 3 e -  2, e} = 3 e - 2  > e, so U is neither free as a pro- 

nilpotent group, nor is formula (*) of (1.4) satisfied for H = U and U = N. 

(1.6) By abuse of language we let/70, (U) denote the free pro-U group on a set 

of ~t0 elements, cf. [19, p. 61], so /~'o(U) is here not intended as the pro-U 

completion of the free (discrete) group Fo, on ~t0 generators. In fact, Po, ( U ) =  
lim F~,/N, N ranging over the normal subgroups with F o / N  ~ U which contain 

almost all the generators (from a fixed set of free generators of Fo,). 

Our proofs that many subgroups of t 6, (U) are isomorphic with Fo, (U) use in 

an essential way a characterization of P~(U) in terms of lifting problems. More 
precisely: 

DEFINITION. 

(**) 

A U-lifting problem for a pro-U group G is a diagram 

A 

G >B 

of two surjective morphisms between pro-U groups G, A, B. It is called finite if 

A and B are finite, i.e. in U. A solution of a. U-lifting problem (**) for G is a 

surjective morphism G -* A such that 

A 

G >B 

commutes. 

(1.7) PROPOSITION (Iwasawa, see [19, p. 84]). Let G be a pro-U group with a 

countable system o[ neighborhoods o[ 1. Then G ~- F, ( U ) if and only i[ each finite 

U-lilting problem [or G has a solution. 
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(1.8) Jarden noted, [11, 1.1] (and it follows easily from (3.2)), that every finite 
qg-lifting problem 

B 

1 
L ( + )  >A 

with rk(B)=< e, is solvable. 

A consequence of this fact and Iwasawa's theorem (1.7) is that, in case q~ is 

full, every open subgroup of F,,o (~ )  is isomorphic to F,,o (~).  To prove this, we 

establish some notation. 

(1.9) Let F~ (~)  be free as a pro-~ group on (x , ) ,~ .  Then we may identify 
t6e (~ )  with the (closed) subgroup of F,o (~ )  generated by x , , . . . ,  xe. For e ~ f  we 
define morphisms 

(h,s : F ~ (cg)_.~ F, (cg) 

and 

by 

4~e : F~ (cg)---} Fe (rg) by 

'b,i(x~)=x, if l<- i<=e,  

~bet(x,)=l if e < i = < f ,  

~b,(x,)=xl if l<-i<=e, 

4,, (x,) = 1 if i > e .  

Because 4~,t "~bt = ~b,, the maps 4~, induce a morphism of F,  (qg) into the inverse 
limit limP, (cd) of the system (a6e (~),  4~,r), which is in fact an isomorphism of 
profinite groups. 

(1.10) PROPOSITION. Let c~ be a full class. Then each open subgroup ofP~ (c~) 

is isomorphic to ffz (q¢). 

PROOF. Let G be an open subgroup of b'~ (~ )  and let 

B 

1' 
G ~A 

be a finite C~-embedding problem. Put G, = ker(q 0.  Then the isomorphism 
F,o (c~) = li_m F, (c~), indicated above, restricts to isomorphisms G = li_m ~b, (G) 

and G~ = li_m 4~, (G,), giving rise to an isomorphism G/G~ = li_m dp,(G)/dp,(Gi). 
Now G/G, is finite, sc for all sufficiently large e we have in fact a natural 
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isomorphism G/G,=ck,(G)/cb,(G~).  Take an e =>rk(B) for which such an 

isomorphism holds. Then, by (1.4), the open subgroup d', (G) of fir (~¢) is a free 

pro-qg group of rank => rk(B), so by (1.8) there is a solution p : 4,e (G)---~ B of the 

lifting problem 
B 

rb~(G) , rb~(G)/~,~(G,) , G/G,  , A 

Hence the composition map G--~ 4,e (G)-S-~ B is a solution of the lifting problem 

we started with. [] 

§2. Freely indexed groups 

NOTATION. Let T(e, r) = 1 + r(e - 1) for e, r E N. 

(2.1) Recall from (1.3) that if H is a subgroup of index r in the free group Fe, 

then H = F~<,.,~. From this and its profinite analogue we obtain: if G is any f.g. 
(profinite) group with rk(G) =< e and H a subgroup of index r in G, then H is 

also finitely generated and rk(H) <= T(e, r). 

The following formula will be often used: 

(2.2) T(T(e,  r), k )  = T(e, rk) for e, r, k E N. 

(2.3) DEFINmON. A f.g. (profinite) group G is called freely indexed, if 

r k ( n )  = T(rk(G), [G :H])  

for each subgroup H of finite index in G. 

If rk(G) = e and G is freely indexed, we say also that G is e-freely indexed. 

Note that our definition says that E ( H ) =  [G : H ] .  E ( G )  for freely indexed 

(profinite) G and H -< G of finite index. So E is an Euler characteristic, in the 

sense of [4], for the class of freely indexed (profinite) groups. 

Clearly the free group F, is e-freely indexed, and every f.g. infinite simple 

group is freely indexed (for such a group does not have any proper subgroup of 

finite index). 

(2.4) LEMMA. Let G be a (profinite) group with rk(G)=< e, and let H be a 

subgroup of index r in G. Then G is e-freely indexed iff H is T( e, r )-freely indexed. 

PROOf. Assume that G is e-freely indexed, and let K be a subgroup of index 

k in H. Then 
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[G : K] = rk, so rk(K) = T(e, rk) = T(T(e, r), k). 

This proves that H is T(e, r)-freely indexed. 

Assume now that H is T(e, r)-freely indexed, and let L be a subgroup of G of 

index I. We have to show that rk(L) = T(e, l). 
As rk(G)<=e, we know that r k ( L ) =  < T(e,l). Now, if r k ( L ) <  T(e,l), then 

rk(L n n )  ~ Z(rk L,[L :L A H ] ) <  T(Z(e, l ) ,[L :L A H ] )  

-- T(e, I .  [L : L  n H ] )  = T(e, [G : L].  [L : L O H ] )  = T(e, [G :L O n ] ) ;  

but using the assumption that H is T(e, r)-freely indexed, we get: 

rk(H n L)  = T ( T ( e , r ) , [ H : H  n L]) = T ( e , r . [ H : H  n L]) 

= T ( e , [ G : H ] . [ H : H N L ] ) =  T ( e , [ G : H A L ] ) ,  

which contradicts the previous inequality. Hence rk(L) = T(e, l). [] 

(2.5) LEMMA. Let G be a fig. profinite group with rk(G)_-< e. 

(i) If K <= L are open subgroups of G and rk(K) = T(e, [G : K]), then rk(L) = 

T(e, [G : L]). 

(ii) If (Ko).,~A is a system of neighborhoods of 1 E G consisting of open 
subgroups of G and rk(K~)= T(e,[G:K~]) for all a E A ,  then G is e-freely 
indexed. 

(iii) Suppose G is infinite and not e-freely indexed. Then there is for each 
natural number n an open subgroup L. of G such that r(e, [G : K]) _-> rk(K) + n, 

for all open subgroups K of L,. 

PROOF. For (i) the argument is the same as in the proof of (2.4). (ii) is an 

immediate consequence of (i) and the definition of e-freely indexed. (iii) is 

proved by induction on n: For L~ we can take any open subgroup of G with 

T(e,[G :L~])>rk(L~). Suppose n _-> 1 and L. is an open subgroup of G 

satisfying the inequality of (iii). Then we have for every proper open subgroup 

L,+1 of L, :  

T(e, [G : L.+~]) = T(T(e, IG : L , ] ) ,  [L.  : L.+,])  => T(rk(Lo)  + n, [L.  : L.+I]) 

= T(rk(L.),[L. :L . . l ] )+  n . [L.  :L,+~]>=rk(L,+~)+(n + 1). [] 

(2.6) EXAMPLES. (A) Every infinite procyclic group is 1-freely indexed, [19, 

p. 581. 
(B) Let c~ be a full class of finite groups. Then Fe(C~) is e-freely a0exed, by 

(1.4). 
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If ~ is the non-fuU class of finite nilpotent groups and e > 2, then (1.5) shows 

that F, (~ )  is not freely indexed. A similar argument shows that for ~ the class of 

finite abelian groups and e => 2, /~,(~) is not freely indexed. 

(C) Let ~ and ~ '  be full classes, with ~ ' ~  c~, and suppose N is a normal 
subgroup of # , ( ~ )  of finite index. Define K as the normal subgroup of N such 
that N / K  is the maximal p ro -~ '  quotient of N ;  so K is a (topologically) 

characteristic subgroup of N, hence a normal subgroup of F,. 

We claim: F ~ ( ~ ) / K  is e-freely indexed. Indeed, its subgroup N / K  is 

isomorphic with Fk (q¢'), where k = T(e, [l~, (~ ) :N] ) ,  so the claim follows from 

(2.4). 

(D) Let S = {p~,p2 ,""  } be an infinite set of prime numbers, pl < pz < "" ", 

and let F = F,, e _-> 2. We define by induction a descending sequence (~)~_->1 of 

normal open subgroups of F as follows: NI = F. If/V~ is already defined, then 

N, = F,., where r~ = T(e,  [F:Nj]) ,  so/V~ has a unique open normal subgroup H 

such that 
N d H  = (Z/p, Z)',. Put N,+~ = H. 

Note that N~+1 is in fact a (topologically) characteristic subgroup of ~ ,  so by 

induction on i, of F as well. Finally put N = f'~7=1N~. We claim that the profinite 

group G = F / N  is e-freely indexed. 

By (2.5) (ii) it suffices to show that rk(N~/N) = T(e,  [F : N~]) = ri. It is clear that 

rk(N, /N)  < rk(N~ ) =  T(e,  [F:N~ ] )=  ri. On the other hand, (Z/p~Z)',, which has 
rank r~, is a quotient of/V~/N, so rk(N~/N) = r~. 

G is clearly a pro-solvable group, but far from being free pro-solvable. In fact, 

its supernatural order # G is the product Hp~', so is a product of finite powers of 

primes. 

REMARK. Such behavior of being freely indexed without being free, as 

indicated in Example (D), is impossible for pro-p-groups. In fact, it is proved in 

[16] that each e-freely indexed pro-p-group is isomorphic to i~,(p). 

QuEsaaoNs. (1) Is there an e-freely indexed profinite group, e = 2, whose 

supernatural order is Ilpp%, where a~ _-< M for some M E N and all primes p?  

(2) Is a residually finite freely indexed discrete group necessarily free? 

§3. Subgroups o! P , ( ~ )  and i7~(~£) 

Let  q~ in this section be a full  class of  finite groups. We want to find conditions 

on a subgroup N of F , ( ~ )  which imply that N is a free p ro-~  group (on finitely 

many or on N0 generators). If N is of finite index in P~(~) this is the case, by 
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(1.4). It is also well known that each subgroup of a free pro-p-group is a free pro- 

p-group. On the other hand, suppose that c¢ contains, besides all p-groups for 

some prime p, also a non p-group. Then, for e _-> 1, the p-Sylow subgroups of 

l~,(~) are certainly not free pro-C¢ groups. However, if e _->2, they are not 

normal in/Te (~g). But, under the same assumption on qg, even normal subgroups 

are not always free pro-CO groups: let N be the kernel of the canonical map 

F,(C~)--* i~e(p), e => 1. Then N does not have Z/pZ  as a quotient, so N is not a 

free pro-~ group. 

Nevertheless, our theorem (3.10) states that all subgroups of Fe (c g)  which are 

proper subgroups of finite index in a normal subgroup of ~,(c¢) are free pro-qg 

groups. This is one of the many corollaries of our main result, which now follows. 

(3.1) THEOREM. Let N be a normal subgroup of F,(Cd) of infinite index, e >- 2, 
such that P , (~ ) /N  is not e-freely indexed. Then N = P~,(~). 

For the proof we need the following lemma, proved by Gaschiitz for finite 

groups, and extended by Jarden and Kiehne in [14] to f.g. profinite groups. 

(3.2) LE~_A. Let ~b : H ~ K be a surjective morphism of profinite groups with 
rk(H) = e. 

Then for each system of generators y . , . . . ,  y, of K there exists a system of 
generators x l , "  ", x, of H with 

4~(x,) = y,, i = 1 , . . . ,  e. 

(3.3) We also want to have available the notion of cartesian square: this is 

defined as an inclusion diagram of subgroups of a group G 

c.--.-~ G 

Go ~ G~ 

satisfying the following equivalent conditions: 

(a) G = G, .  G2 and GIN G2 = Go. 

(b) The natural (coset space) map GdGo---~ GIG2 is bijective. 

(b') The natural map G21Go---~ GIG~ is bijective. 

Note that it makes no difference whether we read the left coset version of (b) 

and (b'), or the right coset version; moreover, in the case of a cartesian diagram 

as above, we have: if G.<G~ and Go<G2, then Go<G;  if G 2 < G  (resp. 

G, < G), then Go<  G~ (resp. G0< G2), and the map (b) (resp. (b')) is an 
isomorphism of groups. 
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(3.4) PROOF OF THEOREM (3.1). By Iwasawa's characterization of F~(qg), 

(1.7), it suffices to find a solution to a given finite R-lifting problem: 

B 

(3.5) 1" 
tO 

N >A 

Let N, = ker(6).  There is an open subgroup L, of Fe(~)  with L, Iq N = N~, so 

putting L = L~. N we have a cartesian square 

LI ~ L 

(3.6) 

N 
N~ 

As F~(qC)/N is infinite, of rank<_ - e, but not e-freely indexed, it follows from 

Lemma (2.5) that L has an open subgroup L '  3 N such that rk(L')  - rk(L ' /N)  is 

arbitrarily large. Putting L~ = L~ tq L '  we obtain 

[N:N,]<=[L':L~]<-_[L:L,]=[N:N~], i . e . [N:N,]=[L ' :L~] .  

Moreover,  for suitably "small" L ' ,  its subgroup L'~ will be normal in L' .  

So replacing, if necessary, L and L~ by L '  and L'~, we may assume that in the 

cartesian square (3.6) L~ is normal in L and rk(L)-rk(L/N)>=rk(B) .  Put 

l = rk(L), l~ = rk(L~/N~) = rk(L/N) and b = rk(B). So l _-> b + 11. Let y l , . . . ,  yb 

generate B and denote by ~,-- . , )~b their images in L/Lt under the map 

B --~A ~- N/N~ = L/Lt .  Choose further yb.~, • • ", yb+l~ in Lt such that under the 

map Lt - - -~Lt /N~-L/N their images )Tb+~,''',]b+l, generate L/N. Hence, by 

(3.2), there are generators z l , ' - - ,  zt of L such that under the canonical map 

L---~L/L~ x L / N  (which is surjective because L~. N = L )  the image of zi is 

()7i, 1) for i = 1, . .  -, b, is equal to (1,)7~ ) for i = b + 1 , - . . ,  b + It, and equals (1, 1) 

i fb+l~<i<=l.  

Because the p ro -~  group L is necessarily free on z~ , . . . ,  z~, cf. [19, p. 68], we 

can define a morphism ~b :L-->B by ~b(z~)= y~ for i=  1 , . . . , b ;  ~b(z~)= 1 for 

b < i < l .  

It is now routine to check that the two subdiagrams of the diagram 

4, 
L ~ B 

L/L1 

J 4  
N ~ N/N~ ~ A 
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commute, so N ~ L - ~  B is the required solution to the lifting problem (3.5), 

provided this map is surjective. Because 40 is surjective, we only have to show 

that N-  Ker(40) = L, which clearly is a consequence of N~. Ker(40) D L1. As for 

this last inclusion: we have y,z ;~ E Ker(L --~ L /L~ = L /N) = N~ and z, ~ Ker(40) 

for i = b + 1 , . . . , b  + L, so y, ~N~.Ker(40) for such i. Now the y,'s for i = 

b + 1,. •., b + l~ generate L~ modulo N~, so L~ CN1 • Ker(40). This concludes the 

proof of (3.1). [] 

As a first corollary we derive an analogue of our main result (3.1) for Po,(c¢). 

We use the notations introduced in (1.9). 

(3.7) COROLLARY. Let N be a normal subgroup of F~,(~) such that 

F~(~)/40~(N) is not e-freely indexed for infinitely many e. Then N = Fo,(~). 

PROOF Let, as before, a finite R-lifting problem 

B 

10 
N ~A 

be given and put Nz = Ker(tp). Then, exactly as in the proof of (1.10), we have for 

each sufficiently large e a natural isomorphism N / N ,  = 40, (N)/40, (NI). Take an 

e ~ rk(B) for which such an isomorphism holds and such that F, (~)/40, (N) is not 

e-freely indexed. Then (3.1), or (1.8) in case ff',((C)/40,(N) is finite, implies that 

there is a solution p:40,(N)-oB of the lifting problem 

40, (N) > 40, (N)140, (N~) > N/N1 

B 

? 
~A 

Hence the composition map N----> 40, (N)--~ B is a solution of the lifting problem 

we started with. 

(3.8) COROLLARY. (i) If  N is a normal subgroup of infinite index of Pe(~), 
e >-_2, with r k ( ~ ( ~ ) / N ) < e ,  then N ~ - # , ( ~ ) .  

(ii) I f  N is a normal subgroup of F , (~ )  such that t:,(c~)/N is f.g., then 
N ~  I:,(~). 

This is immediate from (3.1), respectively (3.7). In case (i) Pe(~)/N is clearly 

not e-freely indexed, but it may be freely indexed: take N to be the (topological) 

normal closure of x, in F, = (x,, • •., x, ), e = 2, i.e. the smallest (closed) normal 
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subgroup of ff'~ containing x,. Then L / N = L - ~ ,  so L / N  is not e-freely 

indexed, but it is e - 1 freely indexed. So N = F~. See also [7, p. 246] for another 

structure theorem describing the normal closure of x, in ff'~. 

(3.9) COROLLARY. Let G = -~e(~), e -> 2, or G = "~(q¢). 

(i) If N is a normal subgroup of infinite index in G such that G / N  is abelian, 

then N ~- F,o(q~). 

(ii) For all n >= 1, G 'n'~ f ~ ( ~ )  and G~,~ ~ f~ (~ ) .  

PROOF. If A is an abelian profinite group of rank e => 2, then for some prime 

p, 1 < [ A  :A p] < ~ ,  but rk(AV)=<rk(A)= e, so A cannot be e-freely indexed. 

This fact implies (i). 

(ii) follows from (i) by induction on n. [] 

We come now to the most unexpected result of this section. 

(3.10) THEOREM. Let G = Fe(~), e _->2, or G = #~(%o). Then each proper 

open subgroup of a normal subgroup of infinite index in G is isomorphic to Fo ( ~ ). 

PROOF. Let N~ be a proper open subgroup of the normal subgroup N of 

infinite index in G, say IN : N, ] = r > 1. Let G~ be an open subgroup of G with 

G, N N = N~. Replacing G, if necessary, by G~ • N, we may assume without loss 

of generality that we have a cartesian square 

j G  

G~ 

N ~ j N  

Consider first the case that G = ~'e(~). Then rk(G~/N~) = rk (G/N)  <= rk(G) < 

rk(G 0, so by (3.8)(i) we get N, = / ~ ( ~ ) .  
We now consider the case G = F~(q¢). The finiteness of N/N~ and condition 

(b') of (3.3) imply easily that for all sufficiently large e, say for e => M: 

eke (N)/c~e (N  0 = N / N ,  = G/G~ = L (~)/~b~ (G,). 

So for e => M we have a cartesian square 

~ L ( ¢ ¢ )  

6 , ( G , ) ~  

I ~6,(N) 
,k, (N,) 
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Then, as before, rk(eke(Gl)/~be(N,))<rk(eke(G1))and ¢ke(G,)=Frte.,)(~ ), so 

4~,(G,)/4~dNI) is not T(e,r)-freely indexed, for all e _->M. Because G , =  
lim ~be (G,) (canonically), the same reasoning as in the proof of (3.7) shows that 

then N~ = F~ (q~). [] 

REMARK. If we take for N the kernel of the natural map P2---~ F2(p), p a 

prime, then N is a normal subgroup of infinite index in F2, but N is not free (it 

does not have Z/(p) as a quotient). But the preCeding theorem says that all its 

proper open subgroups are free (isomorphic with F,o ). Moreover N is torsion 

free (as a subgroup of the torsion free group P2, see [10, 16.2]). This is in contrast 

with the pro-p case: Serre proved in [20] that a torsion free pro-p-group with an 

open subgroup which is a free pro-p-group, is itself a free pro-p-group. 

The following corollary extends a result by Anderson, [1, p. 235]. 

(3.11) COROLLARY. fe((~), for e >=2, and t:~(qg) have trivial center. 

PROOf. The center is a normal subgroup but it cannot have proper open 

subgroups because these would not be abelian, by (3.10) or (1.10). So the center 

is trivial. [] 

Next we generalize a theorem in [18]. 

(3.12) COROLLARY. Suppose the (full) class ¢£ contains the cyclic groups Z/p Z 

and Z/qZ for two different primes p and q. Let G = P , ( ~ £ )  for e>=2, or 
G = P~,(~). Then the Frattini subgroup ¢P(G) of G is trivial. 

PROOf. For every profinite group G, ~ ( G )  is pro-nilpotent, since this is true 
for every finite group G. If in our case ¢P(G) would not be trivial, then it had a 

proper open subgroup which, by (3.10) or (1.10), would be a free pro-q~ group on 

at least two generators, but such a profinite group cannot be pro-nitpotent. [] 

There are of course many similar applications, for instance, for e =>_ 2, F, does 

not have any non-trivial pro-solvable normal subgroup, etc. 

More substantial is the following. Call a subgroup H of a profinite group 

G subnormal (in G) if there is a finite series of subgroups H =  

Ho <I H, <I " " <I Hk = G. 

We can now generalize (3.10) to subnormal subgroups. 

(3.13) TrtEOm~M. Let G = P , ( ~ ) ,  e = 2 ,  or G =_F~(~). Then each proper 

open subgroup o[ a subnormal subgroup of infinite index in G is isomorphic to 

Po(~). 

PROOf. Let H be a subnormal subgroup of infinite index in G, say H = 
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Ho <1 H, <~-- • <1 Hk = G for subgroups Hi of G. We use induction on k. For 

k = 1, we can apply (3.10). Suppose k > 1. If/4o is of finite index in H~, then each 

proper open subgroup of Ho is also a proper open subgroup of HI, and we can 

apply the induction hypothesis. So let Ho be of infinite index in H~. Then H = Ho 

is a normal subgroup of infinite index in a proper open subgroup G'  of H,. But 

then G'  = It;-,,(c~) for some e' => 2, or G ' =  F~(~),  by the induction hypothesis. 

Now we can again apply (3.10) to show that every proper open subgroup of H is 

isomorphic to P~ (q~). [] 

A consequence is a profinite analogue of a well-known result of L. Greenberg 

for discrete free groups, cf. [17, p. 18]. 

(3.14) COROLLARY. I f  e >= 2, then a non-trivial subnormal subgroup H of 

Fe(C~) is finitely generated if and only if H is of finite index in 1O,(~). 

PROOF. If H is of infinite index, then each of its proper open subgroups 

(which do exist) is not finitely generated by (3.13), so H cannot be finitely 

generated, see (2.1). [] 

Now we give a result which shows that the sufficient condition of Theorem 

(3.1) for N to be a free pro-~ group, is not a necessary condition. Namely, in 

(2.6) (D) we indicated a normal subgroup N of /~,, e-> 2, such that F , / N  is 

e-freely indexed. Nevertheless, in this particular case one still has N = P~, as the 

following result implies. Note that in this proposition we do not suppose the 

subgroup to be normal. 

(3.15) PROPOSmON. Let N be a subgroup of infinite index in F',(q¢), e >-" 2, such 

that [F,(qg):N] = I ] p  ~p~ (/9 ranging over the primes) with all a ( p )  finite. 
Then N = 15~(~g). 

PROOF. We follow the proof of Theorem (3.1) and use notations introduced 

there. Our assumption guarantees that we can obtain a cartesian square (3.6) 

such that [L :N] is prime to # (B) (and hence to # (A)), and l =  r k ( L ) =  > 

rk (B)=  b. Because L =Ft(qff), there is by (1.8) a solution rk:L---~B of the 

R-lifting problem 

B 

L ~ L/L1 ~ N/N1 ~ A.  

Now [ L : N . K e r ~ b ]  divides the two supernatural numbers [ L : N ]  and 

[L : Ker(~b)] = # B, which are relatively prime. So L = N .  Ker ~b, from which it 
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follows that the map N ~--~ L - ~ B  is surjective, hence it solves the C¢-lifting 

problem we started with. 

(3.16) We conclude with remarking that Example (2.6)(C) can now be 

generalized to the case that N is of infinite index in/~e(~),  but using otherwise 

the same assumptions and notations: 

l~e(q~)/K is e-freely indexed, for e => 2. 

This follows from (3.1), because K cannot be isomorphic with Fo(~) :  it does not 

have any non-trivial ~ '-quotient .  

§4.  A p p l i c a t i o n s  to  f ie lds  

(4.1) The most immediate applications of the results in §3 are to certain 

infinite extensions of function fields in one variable. As an example, let K be a 

function field in one variable over a countable algebraically closed field C of 

characteristic 0, i.e. K is a finite extension of C(t),  t transcendental over C. Then 

the absolute Galois group G(K) = Gal(/,~ I K)  is isomorphic to 16~, cf. [3, p. 109]. 

Now let K.,b be the maximal abelian extension of K (within the algebraic closure 

/ (  of K).  Then, by (3.9), we get: 

G(K.~) = F,o. 

Similarly, let L be an infinite normal extension of K, L ~ / ~ ;  then for each 

proper finite extension M of L we have: G(M)~-F~ (by (3.10)). 

The groups F) also occur naturally as Galois groups over function fields: let 

S CC, # S = e, and let K be the maximal algebraic extension of C(t), within a 

fixed algebraic closure of C(t), which is unramified at all points of C\S. Then 

K }C(t)is  normal and GaI(K IC( t ) )=  F,,,. (This is a consequence of Riemann's 

Existence Theorem, cf. [19, p. 79].) So many results of §3 can be applied to 

subextensions L I C(t) of K I C(t), to give results on G a I ( K ] L ) .  

(4.2) A more recent source of free profinite groups as Galois groups comes 

from M. Jarden's work, [9, 10]. He starts, in some sense, from the other end: 

Let G = G ( Q ) =  GaI(I~tQ), and e E N. Then for almost all ( o r , - . . ,  or ,)E G" 

- -  in the sense of the product measure on G", induced by the Haar measure on 

the compact group G - -  one has: 

(a) the closed subgroup (or,, • •., cr~ ) of G generated by {or,, • •., are} is free, as a 

profinite group, on ~r,, • •., ~r,. ; 

(b) its fixed field F ix 'o r , , . . . ,  ~re) is pseudo-algebraically closed. 
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(Note that 

Fix(or,,-.. ,  or,) = {x E 01 cr,(x) . . . . .  or, (x) = x} = Fix((tr , , - ' . ,  or,)).) 

Here a field K is called pseudo-algebraically closed (PAC for short) if each 

nonvoid absolutely irreducible afline variety defined over K has K-rational 

points. 

(4.3) REMARK. For simplicity, we state all of Jarden's results only for alge- 

braic extensions of Q, but in most cases Q can be replaced by any countable 
hilbertian field K (and (~ by the algebraic closure of K). Because the notion of 

"hilbertian field" is used further on, let us give a definition. 

A field K is called hilbertian if Hilbert 's Irreducibility Theorem - -  proved by 

Hilbert for Q - -  holds for it, i.e.: for each irreducible [(T, X)E K(T)[X] there 

are infinitely many t ~ K such that .f(t, x) is defined and irreducible in K[X]. 

(4.4) Fields K such that G(K) = F,, resp. G(K) = / ~ ,  are called e-free, resp. 

to-free. Generalizing Ax results on the elementary theory of finite fields in [2], 

Jarden and Kiehne proved, cf. [14], that for each e ~ N the elementary theory of 

perfect e-free PAC-fields is decidable. 
Jarden proved analogues for to-free PAC-fields in [11], but for some time it 

remained an open problem whether algebraic extensions of Q could be to-free 

and PAC. See however [13] for a construction of such a field, and [6] for another 
construction which gives even a decidable model. Our results of §3 make it clear 
that such fields occur in great abundance. For instance, let (~r~,¢r2)E G 2, 

G = Gal (0  I Q), such that its fixed field K is a 2-free PAC-field (which is the case 

for almost all (trt, tr2) E G2). 
Then, by (3.9), its maximal abelian extension K~b is an to-free PAC-field (the 

PAC-property is preserved under separable algebraic extensions). Also, if L is 

any infinite normal extension of K, L # 0 ,  then each proper finite extension L '  

of L is an to-free PAC-field. 

(4.5) Now Roquet te  has noted that to-free PAC-fields of characteristic 0 are 

always hilbertian (a proof is given in [13], and a quite different one in [6]). 

This means that we now have rather surprising examples of hilbertian fields. 

Hilbertian extensions of Q were thought of as not too large, i.e. rather "far" 

from their algebraic closure (~. One way to make this precise is to call an 

algebraic extension L ]Q large, if L contains a field K such that G(K) is finitely 

generated. In fact, it is well known that fields K whose absolute Galois group 
G(K) is finitely generated, cannot be hilbertian. But the to-free PAC-fields we 
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described in (4.4) are hilbertian, and at the same time large as well (because they 

contain a 2-free field). 

We can also obtain in this way a hilbertian field which is a finite extension of a 

non-hilbertian field. In fact we have a stronger result: 

(4.6) PROPOSITION. There exists a non-hilbertian proper subfield L of (~ all of 

whose proper finite extensions are hilbertian. 

PROOF. Let K be a 2-free PAC-subfield of t) and let L be its maximal 

solvable extension, i.e. the compositum of all its finite solvable extensions. Then 

L has clearly no proper solvable extension, so L is certainly not hilbertian. 

(Consider the irreducible polynomial X 2 -  T E L ( T ) [ X ] . )  Now G(L) is a 

normal subgroup of G ( K ) =  F2 of infinite index, so all proper subgroups of 

G(L) of finite index are isomorphic to i~, by (3.10). In other words, each proper 

finite extension of L is to-free and PAC, hence hilbertian. [] 

REMARK. If we take K in the above proof such that it contains a primitive 

pth  root of unity, p a prime, then we can take for L also the maximal 

p-extension of K. L will then not have any cyclic extension of degree p, so L is 

not hilbertian, but L has for each prime q ~  p a cyclic extension of degree q 

(which is hilbertian). 

(4.7) Let us now present the solution of a problem posed by Jarden in [12]. In 

this paper he gave another method to obtain e-free PAC-fields: 

Let e E N. Then for almost all o r e  G =Ga l (01Q)  and almost all 

(rl, • • ", r , ) E  G e, the field Fix(or'l, • •., or',) is e-free and PAC (here we write or~ 

for the conjugate z-lo~ " of or). 

This raised the following problem, cf. [12, problem 2]: does there exist for 

almost all or ~ G a sequence ~'1, Z:, "r3, " " • in G such that the (closed) subgroup of 

G generated by or'., or~2, try3,.., is isomorphic to P~,? 

PROPOSmON. For almost all o- and ~" in G the closed subgroup of G generated 
by the conjugates or'" (n E Z) of or is isomorphic to P~,. 

An immediate field theoretic consequence of its proof is the following. 

COROLLARY. For almost all or and ~" in G, the intersection of the conjugate 

fields ~" (K), n E Z, where K = Fix(or), is an to-free PAC-field, in particular a 

hilbertian field. 

PROOF OF THE PROPOSITION. If or, ~" E G then the (closed) subgroup of G 

generated by the o -~, n E Z, is exactly the normal closure of or in (or, ~'). As we 
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noted in connection with Corollary (3.8) this normal closure is isomorphic with 

F,o if the profinite group (tr, ~') is free on tr, z. But this is the case for almost all 
(tr, z) ~ G 2, see (4.2). []  

(4.8) We conclude with indicating which profinite groups occur as absolute 

Galois groups of PAC-fields. This was initially the motivating question for our 

work. As it turned out, the answer we give here is easily obtained by combining 

some results scattered in the literature. 

PROPOSITION. The following are equivalent for a profinite group G. 
(1) G is isomorphic with a subgroup of a free profinite group. 
(2) cd(G) =< 1. 

(3) G is projective (in the category of profinite groups). 
(4) G = G(K) for some PAC-field K. 

PROOf. (1) f f  (2) is well known and due to Tate. (2):ff  (3) is proved by 

Gruenberg in [8]. (3) ~ (1) follows because every profinite group, in particular 
G, is the homomorphic image of a free profinite group, a (non-obvious) fact 

proved by Douady in [5]. 
We have now shown the equivalence of (1), (2) and (3). (4) f f  (2) is due to Ax, 

[2]; see also lemma 2.1 of [9] for the non-perfect case. (1) ~ (4): clearly we 

have only to show that for each cardinal K there is a PAC-field K such that 

G(K) =/~,, -~, being the free profinite group on a set of cardinality K. For 

K _--< No, see (4.2) and (4.4). 
Suppose K > No. Now Jarden's lemma (2.3) in [11] easily implies that there is a 

perfect PAC-field K and a Galois extension L [K such that GaI(L [ K)  - ~'K. So 

P, is a homomorphic image of G(K). Because F, is projective, this implies that 
F, is also isomorphic with a subgroup of G(K), hence F. - G(K') for some 

separable algebraic extension K '  of K. Then K '  is a PAC-field as required. []  

Note added in pro@ Ralph Strebel answered Question 2 in §2 in the 

affirmative. 
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